HAC TCRS ANCHOR CHANNELS

Technical Datasheet October 2019, Version 1.0

SELECTOR FOR STANDARD PRODUCTS

HAC TCRS anchor channels

Туре			HA	AC plain and	chor channe	els	HAC serrated anchor channels		
			HAC-40	HAC-50	HAC-60	HAC-70	HAC-30	HAC-T50	HAC-T70
								~~~~	
								)	
		HBC-C		M10-	-M20		HBC-B	HB	С-Т
	nel bolt type	HBC-C-N	M12-M16		M12-M20		M10-M12	M12-	M20
& bolt	size	HBC-T						M12-	M20
	HBC-B						M10-M12		
_	Cracked concrete		•				•		
teria	Uncracked co	ncrete	•	•	•		•		•
Base material	NWC concrete	9	•				•		
Base	LWC concrete								
	Reinf./unreinfo	prced	•					- <b>-</b>	
	European Tech (ETA)	hnical Assessment		1.					
data	Static 2D								
Technical data	Static 3D								
echn	Seismic								
Ĕ	Fatigue								
	Fire								
u	Hot-dip galvar	nized (HDG)							
catic	Stainless steel A4								
ecifi	Hot-dip galvanized (HDG) Stainless steel A4 Tear-out band								
Sp	End caps								
PROFI	IS Anchor Chan	nel software				×			
_									

ETA approved

Internal tests ☐ ICC ESR-3520 approved

# PRODUCT OVERVIEW





Other Information			
* * * * * * * * * *	CE		A A A A A A A A A A A A A A A A A A A
European Technical Assessment (ETA)	CE conformity	PROFIS Anchor Channel software	Small edge distance

#### **Current approvals**

Anchor channel	Description	Issuing Authority	No. / Date of issue
HAC (TCRS) Europe	European Technical Assessment (ETA) covering 3D static, fatigue tension and fire loads	DIBt Berlin	ETA-11/0006 18.07.2018
HAC (TCRS) USA	ICC approval (ESR) covering 3D static and seismic loads	ICC-ES	ESR-3520 04.2019





#### Nomenclature of HAC and HAC-T

Channel Type	Profile type and size	❸ Effective embedment depth h _{ef} [mm]	Anchor channel length [mm]	❺ Material finish
HAC	50	106	300	F (HDG)
HAC	T50	106	350	F (HDG)

Examples: 
 Channel type
 Profile type/size
 h_{ef}
 Length
 Material finish



### Dimensions of channel profile

Deservition	Symbol	Units	Anchor Channels							
Description	Symbol	Units	HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70	
Channel width	b _{ch}	[mm]	41.3	40.9	41.9	41.9	43.4	45.4	45.4	
Channel height	h _{ch}	[mm]	25.6	28,0	31.0	31.0	35.5	40.0	40.0	
Channel thickness	t _{nom}	[mm]	2.00	2.25	2.75	2.75	3.50	4.50	4.50	
Channel profile opening	d _{ch}	[mm]	22.3	19.5	19.5	19.5	19.5	19.5	19.5	
Channel lip height	f	[mm]	7.5	4.5	5.3	5.2	6.3	7.4	7.1	
Profile moment of inertia	l _y	[mm ⁴ ]	15349	21463	33125	32049	57930	95457	92192	







HAC-30

HAC-40, HAC-50, HAC-60, HAC-70

HAC-T50, HAC-T70

#### **Dimensions of anchor**

Description	Symbol	Units	Anchor Channels							
Description	Symbol	Units	HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70	
Anchor shaft diameter	d _a	[mm]	5.4	7.2	9.0	9.0	9.0	10.9	10.9	
Anchor head diameter	d _h	[mm]	11.5	17.5	19.5	19.5	19.5	23.0	23.0	
Anchor length	I _A	[mm]	44.4	66.0	78.5	78.5	117.0	140.0	140.0	
Head area	A _h	[mm ² ]	89.0	209.0	258.0	258.0	258.0	356.0	356.0	
Anchor head thickness	t _h	[mm]	2.0	3.0	3.5	3.5	4.5	5.0	5.0	





#### Installation parameters for anchor channel

Description	O make a l	L las las	Anchor Channels							
Description	Symbol	Units	HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70	
Min. effective embedment depth	$h_{_{\mathrm{ef},\mathrm{min}}}$	[mm]	68	91	106	106	148	175	175	
Min. anchor spacing	S _{min}	[mm]	50	50 100						
Max. anchor spacing	S _{max}	[mm]	250							
Min. end spacing	х	[mm]				2	5			
Minimum channel length	I _{min}	[mm]	100			15	50			
Min. edge distance ( $c_{11}$ , $c_{12}$ & $c_{21}$ , $c_{22}$ )	C _{min}	[mm]		50 75						
Min. thickness of concrete	h	[mm]	80	105	125	125	168	196	196	
member	h _{min}				ł	$n_{ef} + t_h + c_{nom}^{1}$				

1) c_{min} according to EN 1992-1-1:2004 + AC2010



#### Materials of anchor channels and channel bolts

Component			Stainless steel	
Component	Material properties	Coa	Material properties	
Channel Profile	Carbon steel according to EN 10025: 2004	Hot-dip galvar Hot-dip galvar according to EN	-	
Rivet	Carbon steel	Hot-dip galvar according to EN	-	
Anchor	Carbon steel	Hot-dip galvar according to EN	-	
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated ≥ 8 µm according to DIN EN ISO 4042: 1999	Hot-dip galvanized ≥ 45 µm ⁵)	Steel grade 50 according to EN ISO 3506-1: 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
Plain washer ³⁾ according to EN ISO 7089: 2000 and EN ISO 7093-1: 2000	Hardness class A ≥ 200 HV	Electroplated ≥ 8 µm	Hot-dip galvanized ≥ 45 µm ⁵)	Hardness class A ≥ 200 HV 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
Hexagonal nut according to EN ISO 4032: 2012 or DIN 934: 1987-10 ⁴⁾	Property class 8 according to EN ISO 898-2: 2012	Electroplated ≥ 8 μm	Hot-dip galvanized ≥ 45 µm ^₅ )	Property class 70 according to EN ISO 3506-2: 2009 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439

¹⁾ For HAC-30F, HAC-40F and HAC-(T)50F.
 ²⁾ For HAC-60F and HAC-(T)70F.
 ³⁾ In scope of delivery only for HBC-C-N

⁴⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel.
 ⁵⁾ Hot-dip galvanized according to EN ISO 1461: 2009.

	HBC channel bolts										
HBC-B	HBC-C	HBC-C-N	HBC-T	HBC-C-E							
T-Head bolt compatible with serrated anchor channels HAC-30	T-Head bolt for anchor channels HAC-40 to HAC-70	Notching T-Head bolt for anchor channels HAC-40 to HAC-70	T-Head bolt for serrated anchor channels HAC-T50 and HAC-T70	T-Head bolt for anchor channels HAC-40 and HAC-50							

#### Nomenclature of Hilti HBC channel bolts

Hilti Channel Bolt	Ø Bolt type		Diameter	O Diameter O Bolt length [mm]		Finish or material
HBC	С		M12	50	4.6, 8.8 & A4-50	F (HDG) or R (stainless steel)
HBC	E		M16	60	8.8	G (electroplated)
HBC	C-N		M16	80	8.8	F (HDG)
HBC	В	~~~~	M10	40	4.6	F (HDG) or G (electroplated)
HBC	т	~~~~	M16	60	8.8	F (HDG)

Examples: 
 Channel bolt 
 Bolt type 
 Diameter 
 Bolt length 
 Steel grade 
 Finish or material

HBC-C M12 x 50 8.8 F



HBC-T M16 x 60 8.8 F





#### **Dimension of channel bolts**

		Dimensions					
Anchor channel	Channel bolt type	b,	b ₂	k	d		
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(m	m)			
HAC-30	HBC-B	19.0	34.0	9.2	10		
HAC-30	HB0-B	19.0	34.0	9.2	12		
HAC-40	HBC-C-E	14.0	33.0	10.4	12		
HAC-50	HBC-C-L	17.0	33.0	13.4	16		
	HBC-C	14.0		10.4	10		
			33.0	10.4	12		
HAC-40		18.5		11.4	16		
HAC-50 HAC-60		10.5		13.9	20		
HAC-70				11.4	12		
	HBC-C-N	18.5	33.0	11.4	16		
				13.9	20		
					12		
HAC-T50 HAC-T70	HBC-T	18.5	35.4	12.0	16		
HAC-170					20		



#### Minimum spacing for channel bolts

Channel bolt	M10	M12	M16	M20		
Minimum spacing between channel bolts	S _{cbo,min}	[mm]	50	60	80	100



 $s_{cbo}$  = center to center spacing between channel bolts ( $s_{cbo,min}$  = 5d)

#### Steel grade of bolts and corrosion protection

Channel Bolt	Carbor	Stainless steel ¹⁾	
Steel grade	4.6	8.8	A4-50
f _{uk} [N/mm²]	400	800 / 830 ²⁾	500
f _{yk} [N/mm²]	240	640 / 660 ²⁾	210
Corrosion protection		3) 4)	R

¹⁾ Material properties according to table page 6 ²⁾ Material properties according to EN ISO 898-1

³⁾ Electroplated ⁴⁾ Hot-dip galvanized

8

# STEEL FAILURE MODES – STATIC RESISTANCE UNDER TENSION, PERPENDICULAR SHEAR AND LONGITUDINAL SHEAR

#### Resistance values under tension load - steel failure

Anchor	r channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70		
Steel fa	Steel failure: Anchor:										
	Characteristic resistance	N _{Rk,s,a} [kN]	18.2	33.1	52.5	52.5	52.5	76.3	76.3		
	Design resistance	N _{Rd,s,a} [kN]	10.1	18.4	29.2	29.2	29.2	42.4	42.4		
Steel fa	ilure: Connection between an	chor and	channel								
	Characteristic resistance	N _{Rk,s,c} [kN]	18.2	25.0	35.0	35.0	50.1	71.0	71.0		
ľ	Design resistance	N _{Rd,s,c} [kN]	10.1	13.9	19.4	19.4	27.8	39.4	39.4		
Steel fa	ilure: Local flexure of channel	lips									
	Characteristic or design spacing of channel bolts	s _{i,n} [mm]	83	82	84	84	87	91	91		
Ų	Characteristic resistance	N ⁰ _{Rk,s,I} [kN]	19.9	25.0	35.0	35.0	50.1	71.0	71.0		
4	Design resistance	N⁰ _{Rd,s,I} [kN]	11.1	13.9	19.4	19.4	27.8	39.4	39.4		

#### Resistance values under tension load – steel failure

Anchor chann	HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70					
Steel failure: Flexure of channel												
	of		HBC-B	755	-	-	-	-	-	-		
	c	М	HBC-C	-	1136	1596	-	2187	3160	-		
	eristi	M _{Rk,s,flex} [Nm]	HBC-C-E	-	1136	1596	-	-	-	-		
	Characteristic flexural resistance channel	channel	HBC-C-N	-	980	1345	-	2156	3005	-		
	Ch: flex cha		HBC-T	-	-	-	1596	-	-	2975		
IT.			HBC-B	657	-	-	-	-	-	-		
	<u>a</u>	М	HBC-C	-	988	1388	-	1902	2748	-		
	lexura ce of	M _{Rd,s,flex} [Nm]	HBC-C-E	-	988	1388	-	-	-	-		
	Design flexural resistance of channel		HBC-C-N	-	852	1170	-	1875	2613	-		
	Des resi		HBC-T	-	-	-	1388	-	-	2587		

#### **Displacements under tension load**

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Tension load	N [kN]	6.6	11.3	14.3	14.7	18.8	26.6	25.2
Short time displacement 1)	δ _{νο} [mm]	1.6	1.7	1.1	1.7	1.1	1.0	1.5
Long time displacement ¹⁾	δ _{N∞} [mm]	3.2	3.4	2.2	3.4	2.2	2.0	3.0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.



Static/ quasi-static



<u>.</u>	

### Resistance values under perpendicular and longitudinal shear load - steel failure quasi-static

Static/	
nugei-etatio	

Anchor o	hannel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failu	ire: Anchor								
	Characteristic	V _{Rk,s,a,y} [kN]	23.7	39.6	53.6	53.6	77.3	114.8	114.8
U	resistance	V _{Rk,s,a,x} [kN]	10.2	18.4	29.0	29.0	29.0	41.9	41.9
	Design resistance	V _{Rd,s,a,y} [kN]	15.8	26.4	35.7	35.7	51.5	76.5	76.5
	Design resistance	V _{Rd,s,a,x} [kN]	6.8	12.3	19.3	19.3	19.3	27.9	27.9
Steel failu	re: Connection betwee	en anchor and o	channel						
	Characteristic	V _{Rk,s,c,y} [kN]	23.7	39.6	53.6	53.6	77.3	114.8	114.8
4	resistance	V _{Rk,s,c,x} [kN]	9.1	12.5	17.5	17.5	25.1	35.5	35.5
	Decign registeres	V _{Rd,s,c,y} [kN]	13.2	22.0	29.8	29.8	42.9	63.8	63.8
	Design resistance	V _{Rd,s,c,x} [kN]	5.1	6.9	9.7	9.7	13.9	19.7	19.7
Steel failu	ire: Local flexure of cha	annel lips unde	r perpendicu	ılar shear					
	Characteristic or design spacing of channel bolts	s _{ı,v} [mm]	83	82	84	84	87	91	91
	Characteristic resistance	V ⁰ _{Rk,s,l,y} [kN]	23.7	34.9	47.5	47.5	72.2	95.8	95.8
	Design resistance	$V^{0}_{Rd,s,l,y}$ [kN]	13.2	19.4	26.4	26.4	40.1	53.2	53.2



quasi-static

#### Resistance values under longitudinal shear - steel failure

Anchor channel	l			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failure: Con	nection between	channel	lips and ch	annel bolt						
			HBC-B M12 4.6	3.5		-			-	
			HBC- C-N M12 8.8		8.5	8.5		8.5	8.5	
	Characteristic		HBC- C-N M16 8.8		19.7	19.7	-	19.7	19.7	-
	resistance	V _{Rk,s,l,x} [kN]	HBC- C-N M20 8.8	-	-	24.1		24.1	24.1	
			HBC-T M12 8.8		-		15.1			15.1
			HBC-T M16 8.8			-	20.1	-	-	20.1
			HBC-T M20 8.8				20.1			20.1
			HBC-B M12 4.6	1.4		-			-	
			HBC- C-N M12 8.8		3.4	3.4	-	3.4	3.4	
			HBC- C-N M16 8.8		7.8	7.8		7.8	7.8	-
	Design resistance	V _{Rd,s,l,x} [kN]	HBC- C-N M20 8.8	-	-	9.6		9.6	9.6	
			HBC-T M12 8.8				7.0			7.0
			HBC-T M16 8.8			-	-	9.3	-	-
			HBC-T M20 8.8				9.3			9.3

#### Displacements under perpendicular shear

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Shear load	V _y [kN]	8.0	13.9	18.9	21.0	29.0	38.0	45.6
Short time displacement ¹⁾	δ _{v,y,0} [mm]	1.0	1.0	1.5	2.7	1.5	1.5	2.4
Long time displacement ¹⁾	δ _{v,y,∞} [mm]	1.5	1.5	2.3	4.1	2.3	2.3	3.6

1) Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lip and slip of the anchor channel in concrete.





quasi-static

#### Displacements under longitudinal shear

									quae. etaile	
Anchor channel			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70	
Channel bolt			HBC-B	НВС	HBC-C-N		HBC-C-N		HBC-T	
		M12	1.4	3	.4	6.7	3.	.4	6.7	
Shear load	V _x [kN]	M16		7.	.8	8.9	7.	8	8.9	
	[[(]]]]	M20	-	-	9.6	8.9	9.	6	8.9	
			0.1	0.	05	1.4	0.0	)5	1.4	
Short time displacement ¹⁾	δ _{v,x,0} [mm]	M16		0	.4	1.7	0.	.4	1.7	
dioplacomont	[]	M20	-	-	0.1	1.7	0	.1	1.7	
	$\delta_{v,x,\infty}$	M12	0.2	0	.1	2.1	0	.1	2.1	
Long time displacement ¹⁾	o _{v,x,∞} [mm]		M16		0	,6	2,5	0.	6	2.5
		M20	-	-	0.2	2.5	0.	2	2.5	

1) Displacements of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

#### Resistance values under tension load – steel failure of channel bolts

Channel bolt	diameter				M10	M12	M16	M20
Steel failure								
			HBC-B	4.6	23.2	33.7	-	-
			прс-р	A4-50	29.0	42.2	-	-
				4.6	23.2	33.7	62.8	98.0
	Characteristic resistance	N _{Rk,s} [kN]	HBC-C HBC-C-E	8.8	46.4	67.4	125.6	174.3
	10010101100	[ICI 4]	HEO O E	A4-50	29.0	42.2	78.5	122.5
			HBC-C-N	8.8	-	67.4	125.6	174.3
			HBC-T	8.8	-	67.4	125.6	177.4
			HBC-B	4.6	11.6	16.8	-	-
			пвс-в	A4-50	10.1	14.7	-	-
				4.6	11.6	16.8	31.4	49.0
	Design resistance	N _{Rd,s} [kN]	HBC-C HBC-C-E	8.8	30.9	44.9	83.7	116.2
	1001010100	ance [kN]	HEO O E	A4-50	10.1	14.8	52.3	42.8
			HBC-C-N	8.8	-	44.9	83.7	116.2
			HBC-T	8.8	-	44.9	83.7	116.2

#### Resistance values under shear load – steel failure of channel bolts

Channel bolt	diameter		M10	M12	M16	M20		
Steel failure								
			HBC-B	4.6	13.9	20.2	-	-
			пвс-в	A4-50	17.4	25.3	-	-
				4.6	13.9	20.2	37.7	58.8
	Characteristic resistance	V _{Rk,s} [kN]	HBC-C HBC-C-E	8.8	23.2	33.7	62.8	101.7
-	resistance	[KN]	HDO O L	A4-50	17.4	25.3	47.1	73.5
	-		HBC-C-N	8.8	-	33.7	62.8	101.7
			HBC-T	8.8	-	33.7	62.8	101.7
				4.6	8.3	12.1	-	-
			HBC-B	A4-50	7.3	10.6	-	-
				4.6	8.3	12.1	22.6	35.2
	Design	V _{Rd,s} [kN]	HBC-C HBC-C-E	8.8	18.6	27.0	50.2	60.9
	resistance		HB0-0-L	A4-50	7.3	10.6	19.8	30.9
			HBC-C-N	8.8	-	26.9	50.2	81.3
			HBC-T	8.8	-	26.9	50.2	81.3

#### Resistance values under shear load with lever arm – steel failure of channel bolt

Channel bolt diameter					M10	M12	M16	M20
Flexure resistance-steel								
			HBC-B	4.6	29.9	52.4	-	-
			пвс-в	A4-50	37.4	65.5	-	-
	Characteristic flexure resistance			4.6	29.9	52.4	133.2	259.6
		Mº _{Rk,s} [Nm]	HBC-C HBC-C-E	8.8	59.8	104.8	266.4	538.7
		[i viri]	HEC C L	A4-50	37.4	65.5	166.5	324.5
			HBC-C-N	8.8	-	104.8	266.4	538.7
			HBC-T	8.8	-	104.8	266.4	538.7
			4.6	4.6	17.9	31.3	-	-
			прс-р	A4-50	15.7	27.5	-	-
				4.6	17.9	31.3	79.8	155.5
	Design flexure resistance	M ⁰ _{Rd,s} [Nm]		8.8	47.8	83.8	213.1	430.9
		[]		A4-50	15.7	27.5	70.0	136.3
			HBC-C-N	8.8	-	83.8	213.1	430.9
			HBC-T	8.8	-	83.8	213.1	430.9
			HBC-B	4.6, A4-50	25.0	27.0	-	-
	Internal lever arm	a	HBC-C HBC-C-E	4.6, 8.8, A4-50	24.0	26.0	28.0	30.0
		[mm]	HBC-C-N	8.8	-	26.0	28.0	30.0
			HBC-T	8.8	-	26.0	28.0	30.0



 $\begin{array}{l} T_{s} = \mbox{tension force acting on the channel lips} \\ C_{s} = \mbox{compression force acting on the channel lips} \\ M_{Rk,s}^{0} \leq 0.5. \ N_{Rk,s,i} \ . \ a \\ M_{Rk,s}^{0} \leq 0.5. \ N_{Rk,s,i} \ . \ a \\ a = \mbox{internal lever arm} \end{array}$ 

Static/

quasi-static



# CONCRETE FAILURE MODES – STATIC RESISTANCE UNDER TENSION AND PERPENDICULAR SHEAR



#### **Resistance values under tension load – concrete failure**

Static/ quasi-static

Anchor channe	el			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Pullout failure										
	Characteristic resistance in cracked concrete C12/15			8.0	18.8	23.2	23.2	23.2	32.0	32.0
	Design resistance cracked concrete		N _{Rd,p} [kN]	5.3	12.5	15.4	15.4	15.4	21.3	21.3
	Amplification factor other concrete gra	$\Psi_{\rm c}$				Ч	$ \varphi_{c} = \frac{f_{c,specified}}{12MPa} $	<u> </u>		
Concrete cone f	Concrete cone failure									
	Product factor k ₁	cracked	k _{cr,N}	7.7	8.0	8.2	8.2	8.6	8.9	8.9
	for characteristic resistance	un-cracked	k _{ucr,N}	11.0	11.5	11.7	11.7	12.3	12.7	12.7
	Product factor k ₁ for design	cracked	k _{cr,N}	5.1	5.3	5.5	5.5	5.7	5.9	5.9
	resistance	un-cracked	k _{ucr,N}	7.3	7.7	7.8	7.8	8.2	8.5	8.5
Splitting										
1	Characteristic edg	ge distance	c _{cr,sp} [mm]	204	273	318	318	444	525	525
Ŷ	Characteristic spacing		s _{cr,sp} [mm]				2.0 · c _{cr,sp}			

#### Resistance values under perpendicular shear load – concrete failure

Anchor cha	nnel			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70	
Pry out failur	re										
	Product factor k ₈				2.0						
Concrete edg	ge failure										
	Product		k _{cr,V}	7.5	7.5	7.5	7.5	7.5	7.5	7.5	
-	factor k ₁₂ for characteristic resistance	un-cracked concrete	k _{ucr,V}	10.5	10.5	10.5	10.5	10.5	10.5	10.5	
K	Product factor	cracked concrete	k _{cr,V}	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	k ₁₂ for design resistance	un-cracked concrete	k _{ucr,V}	7.0	7.0	7.0	7.0	7.0	7.0	7.0	

# STEEL FAILURE MODES - COMBINED LOADING

quasi-static

Fire exposure from one side only



#### Resistance under combined tension and shear loads

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failure: Local flexure	of channel lips	and flexure of	of channel					
Product factor	k ₁₃				1.0 ¹⁾			
Steel failure: Anchor and c	onnection betw	veen anchor a	and channel					
Product factor	k ₁₄				1.0 ²⁾			

 $^{1)}$  k₁₃ can be taken as 2,0 if V_{Rd,s,I} is limited to N_{Rd,s,I}.  $^{2)}$  k₁₄ can be taken as 2,0 if max(V_{Rd,s,a}; V_{Rd,s,c}) is limited to min(N_{Rd,s,a}; N_{Rd,s,c}).

## FIRE RESISTANCE

#### Resistance values under tension and shear load under fire exposure

Anchor channel				HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Steel failure of anchor, conn	ection betw	veen anchor a	nd channel	, local flexure	of channel lip	)		
	R30	N _{Rk,s,fi}		2.5	2.8		5.7	
	R60	=		1.8	2.3		4.0	
Characteristic and design resistance in cracked concrete C20/25	R90	V _{Rk,s,fi} Or N _{Rd,s,fi} = V _{Rd,s,fi}	[kN]	1.1	1.7		2.3	
	R30			3	5		50	
Axial spacing	R60	u	[mm]	3	5		50	
	R90			4	5		50	

#### Resistance under tension and shear load of channel bolt under fire exposure

Channel bolt diam	eter			M8	M10	M12	M16	M20		
Steel failure without lever arm										
		R30	N		1.0	1.7	2.5			
	HBC-B R60 =				0.8	1.3	1.8	-		
Characteristic and		R90	V _{Rk,s,fi}	<b>EL-NI</b>	0.6	0.9	1.1			
design resistance		R30	or N _{Rd,s,fi}	[kN]	-	2.5	3.1	5.	7	
HBC-C R60		R60	=		-	1.9	2.5	4.	)	
		R90	$V_{Rd,s,fi}$		-	1.3	1.9	2.	3	







Fire

15



# FATIGUE LOADING



Fatique

#### Possible channel / channel bolt combination under fatigue load

Anchor channel	Special screw type	Diameter	Steel grade	Corrosion class
HAC-30	HBC-B	M10	4.6	
NAC-30	прс-р	M12	4.0	
		M12		
HAC-40		M16	4.6 8.8	
		M20	0.0	G 1)
HAC-50		M16	4.6	G 1) F 2)
HAC-50	HBC-C	M20	8.8	
HAC-60		M16	4.6	
TIAC-00		M20	8.8	
HAC-70		M20	4.6 8.8	

¹⁾ Electroplated

²⁾ Hot-dip galvanized

# Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload ( $N_{Ed}$ = 0) ¹⁾

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Steel failure	n			$\Delta \mathbf{N}_{Rk,s,0,n}$ [kN]		
	≤ 10 ⁶	1.76	1.57	2.66	3.54	6.44
Characteristic resistances under	≤ 3·10 ⁶					
fatigue tension load without static	≤ 10 ⁷	1.60	1.50	2.60	3.50	6.40
preload	≤ 3·10 ⁷	1.60	1.50	2.00		0.40
	> 6·10 ⁷					

¹⁾ Design method I according to EOTA TR 050

### Reduction factor $\eta_{\text{c,fat}}$ with n load cycles without static preload (N $_{\text{Ed}}$ = 0) $^{1)}$

0,141				Eu		
Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Concrete cone & pullout failure	n			$\eta_{c,fat}$ [-]		
	≤ 10 ⁶			0.600		
Reduction factor for $AN = n N$	≤ 3·10 ⁶			0.571		
$\begin{array}{l} {}_{\Delta}N_{_{Rk,p;0;n}}=\eta_{_{c},\mathrm{fat}} \text{ , } N_{_{Rk,p}} \\ {}_{\Delta}N_{_{Rk,c;0;n}}=\eta_{_{c},\mathrm{fat}} \text{ , } N_{_{Rk,c}} \\ \text{with } N_{_{Rk,p}} \text{ at page 14 - 1}^{\mathrm{st}} \text{ table} \end{array}$	≤ 10 ⁷			0.542		
with $N_{Rk,p}$ at page 14 - 1 st table	≤ 3·10 ⁷			0.516		
N _{Rk,c} calculated according to EOTA TR 047	≤ 6·10 ⁷			0.500		
	> 6·10 ⁷			0.500		

¹⁾ Design method I according to EOTA TR 050

# Characteristic resistances under fatigue tension load with n $\rightarrow\infty$ load cycles without static preload (N $_{Ed}$ = 0) $^{1)}$

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Steel failure						
$\Delta N_{Rk,s;0;\infty}$ ;	[kN]	1.6	1.5	2.6	3.5	6.4
Concrete cone and pullout failur	e					
$\eta_{c,fat}$	[-]			0.5		

¹⁾ Design method II according to EOTA TR 050

 $\gamma_{\mathsf{M},\mathsf{fat},\mathsf{n}} = \gamma_{\mathsf{M},\mathsf{fat}} + (\gamma_{\mathsf{M}} - \gamma_{\mathsf{M},\mathsf{fat}}) \cdot (\Delta \mathsf{N}_{\mathsf{Rk},\mathsf{n}} - \Delta \mathsf{N}_{\mathsf{Rk},\infty}) / (\mathsf{N}_{\mathsf{Rk}} - \Delta \mathsf{N}_{\mathsf{Rk},\infty})$ 

In absence of other national regulations the following safety factors  $\gamma_{M}$  and  $\gamma_{M,fat}$  are recommended for design method I according to EOTA TR 050:  $\gamma_{M}$  = 1,8 and  $\gamma_{M,fat}$  = 1,35

In absence of other national regulations the following safety factor  $\gamma_{M,fat}$  is recommended for design method II according to EOTA TR 050:  $\gamma_{M,fat}$  = 1,35

#### **Determination of required T-Bolt length**



Height of **T-Bolt Profile** Production m+s+u (mm) channel lip (f) Туре M10 M16 M20 [mm] M12 HAC-30 TCRS 7.5 HBC-B 13.9 17.3 -HAC-40 TCRS 4.5 HBC-C 13.9 17.3 21.8 HAC-50 TCRS 5.3 HBC-C 13.9 17.3 21.8 27.0 HAC-60 TCRS 6.3 HBC-C 13.9 17.3 21.8 27.0 HAC-70 TCRS 7.4 HBC-C 13.9 27.0 17.3 21.8

I = nominal length of channel bolt

t_{fix} = fastenable thickness (Thickness of the attached part)

= height of channel lip

m = thickness of the nut (ISO 4032)

s = thickness of the washer

u = channel bolt projection

Required T-Bolt length I =  $t_{fix} + f + (m+s+u)$ 



#### Installation instructions for anchor channels HAC and HAC-T

1) Correct selection of anchor channel in accordance with the design specification.

2) If cutting of the anchor channel is necessary, cut the channel with an end spacing

x = 25mm or 0.98 inch

3) Position the anchor channel such that the channel lips will be flush with the surface of the concrete. Secure anchor channels to formwork (3a) or adjoining reinforcing steel (3b) with nails, staples, rivets, or wire ties as appropriate. Supports and attachments shall be adequate to ensure that anchor channels remain in position during concrete placement. Anchor channels shall not be pushed into fresh concrete (3c). Anchors shall not be bent, cut or otherwise modified (3d).

4) Anchor channels shall be protected from intrusion of concrete and slurry into the channel during concrete placement. Place and consolidate concrete around anchor channels to mitigate voids.

Make sure that channels are leveled.

5) Installed anchor channels must be flush with the concrete surface.

6 and 7) Remove the foam filler after hardening of concrete and striking the formwork.



#### Installation instructions for HBC-B channel bolts

1) Select Hilti channel bolt type HBC-B in accordance with the design specification.

2) Place the channel bolt in the channel and lock the channel bolt in the channel by turning it 90 degrees.

3) Verify alignment of the bolt with the groove. Groove of bolt must be perpendicular to the longitudinal axis of the channel.

4) Verify that the channel bolt is not located outside of that portion of the channel bounded by the outermost anchors.

5) Do not cut channel bolts.

6) Install the fixture distinguishing between installation type A and installation type B.

- For installation type A the fixture is in contact with the concrete surface and the channel profile.
- For installation type B suitable steel element e.g. square plate washer is used to avoid introducing forces into the concrete during application of the installation torque T_{inst}. The steel element shall have sufficient stiffness to avoid deformation of the channel lips.

7) Apply the installation torque  $T_{inst}$  to the channel bolt with a calibrated torque wrench. Do not exceed the value  $T_{inst}$ distinguishing between installation type A and installation type B.

Select the correct installation torque  $T_{inst}$  according to material, channel type, channel bolt diameter, and installation type A or B.









		Ti	nst
			B
		HAC-30	HAC-30
M10	4.6, A4-50	15 Nm / 11 ft-lb	15 Nm / 11 ft-lb
M12	4.6, A4-50	25 Nm / 19 ft-lb	25 Nm / 19 ft-lb

Hilti Instructions for Use (IFU) for Hilti HBC-B channel bolts



#### Installation instructions for HBC-C channel bolts

1) Select Hilti channel bolt type HBC-C in accordance with the design specification.

2) Place the channel bolt in the channel and lock the channel bolt in the channel by turning it 90 degrees.

3) Verify alignment of the bolt with the groove. Groove of bolt must be perpendicular to the longitudinal axis of the channel.

4) Verify that the channel bolt is not located outside of that portion of the channel bounded by the outermost anchors.

5) Do not cut channel bolts.

6) Install the fixture distinguishing between installation type A and installation type B.

- For installation type A the fixture is in contact with the concrete surface and the channel profile.
- For installation type B suitable steel element e.g. square plate washer is used to avoid introducing forces into the concrete during application of the installation torque T_{inst}. The steel element shall have sufficient stiffness to avoid deformation of the channel lips.

7) Apply the installation torque  $T_{inst}$  to the channel bolt with a calibrated torque wrench. Do not exceed the value  $T_{inst}$ distinguishing between installation type A and installation type B.

Select the correct installation torque T_{inst} according to material, channel type, channel bolt diameter, and installation type A or B.









					Tinst				
			A			B			
		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40	HAC-50	HAC-60	HAC-70
M10	4.6, A4-50		15 Nm / 11 ft-lb				15 Nm /	/ 11 ft-lb	
IVITO	8.8		15 Nm / 11 ft-lb			48 Nm / 35 ft-lb			
M12	4.6, A4-50		25 Nm / 19 ft-lb			25 Nm / 19 ft-lb			
IVIIZ	8.8		25 Nm / 19 ft-lb				75 Nm /	55 ft-lb	
M16	4.6, A4-50		60 Nm / 44 ft-lb				60 Nm /	44 ft-lb	
IVI I O	8.8		60 Nm / 44 ft-lb		185 Nm / 136 ft-lb				
M20	4.6, A4-50	70 Nm / 52 ft-lb	105 Nm / 78 ft-lb	120 Nm	/ 89 ft-lb		120 Nm	/ 89 ft-lb	
10120	8.8	70 Nm / 52 ft-lb	105 Nm / 78 ft-lb	120 Nm	/ 89 ft-lb		320 Nm /	236 ft-lb	

Hilti Instructions for Use (IFU) for Hilti HBC-C channel bolts

#### Installation instructions for HBC-T channel bolts

1) Select Hilti serrated channel bolt in accordance with the design specification.

2) Place the channel bolt in the channel and lock the channel bolt in the channel by turning it 90 degrees.

3) Verify alignment of the bolt with the groove. Groove of bolt must be perpendicular to the longitudinal axis of the channel.

4) Verify that the channel bolt is not located outside of that portion of the channel bounded by the outermost anchors.

5) Do not cut channel bolts.

6) Install the fixture distinguishing between installation type A and installation type B.

- For installation type A the fixture is in contact with the concrete surface and the channel profile.
- For installation type B suitable steel element e.g. square plate washer is used to avoid introducing forces into the concrete during application of the installation torque T_{inst}. The steel element shall have sufficient stiffness to avoid deformation of the channel lips.

7) Apply the installation torque  $T_{inst}$  to the channel bolt with a calibrated torque wrench. Do not exceed the value  $T_{inst}$ distinguishing between installation type A and installation type B. Complete removal and reinstallation of the channel bolt HBC-T is not allowed.

Select the correct installation torque T_{inst} according to material, channel type, channel bolt diameter, and installation type A or B.









	Tinst				
				B	
		HAC-T50	HAC-T70	HAC-T50	HAC-T70
M12	8.8	75 Nm / 55 ft-lb		75 Nm / 55 ft-lb	
M16	8.8	100 Nm / 74 ft-lb		185 Nm / 136 ft-lb	
M20	8.8	120 Nm / 89 ft-lb		320 Nm / 236 ft-lb	

Hilti Instructions for Use (IFU) for Hilti HBC-T channel bolts



#### Installation instructions for HBC-C-N channel bolts

1) Select Hilti channel bolt in accordance with the design specification.

2) Place the channel bolt in the channel and lock the channel bolt in the channel by turning it 90 degrees.

3) Verify alignment of the bolt with the groove. Groove of bolt must be perpendicular to the longitudinal axis of the channel.

4) Verify that the channel bolt is not located outside of that portion of the channel bounded by the outermost anchors.

5) Do not cut channel bolts.

6) Install the fixture distinguishing between installation type A and installation type B.

- For installation type A the fixture is in contact with the concrete surface and the channel profile.
- For installation type B suitable steel element e.g. square plate washer is used to avoid introducing forces into the concrete during application of the installation torque T_{inst}. The steel element shall have sufficient stiffness to avoid deformation of the channel lips.

7) Apply the installation torque  $T_{inst}$  to the channel bolt with a calibrated torque wrench. Do not exceed the value  $T_{inst}$ distinguishing between installation type A and installation type B. Complete removal and reinstallation of the channel bolt HBC-C-N is not allowed.

Select the correct installation torque T_{inst} according to material, channel type, channel bolt diameter, and installation type A or B.











Hilti Instructions for Use (IFU) for Hilti HBC-C-N channel bolts



Hilti Aktiengesellschaft 9494 Schaan, Liechtenstein P +423-234-2111

www.facebook.com/hiltigroup www.hilti.com

